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Propagation of an intense charged particle beam pulse through a background plasma is a common
problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge
and current of the beam pulse, and thus provides a convenient medium for beam transport. The
application of a small solenoidal magnetic field can drastically change the self-magnetic and
self-electric fields of the beam pulse, thus allowing effective control of the beam transport through
the background plasma. An analytic model is developed to describe the self-magnetic field of a
finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field.
The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and
self-magnetic fields when �ce��pe�b, where �ce=eB /mec is the electron gyrofrequency, �pe is the
electron plasma frequency, and �b=Vb /c is the ion beam velocity relative to the speed of light. This
condition typically holds for relatively small magnetic fields �about 100 G�. Analytical formulas are
derived for the effective radial force acting on the beam ions, which can be used to minimize beam
pinching. The results of analytic theory have been verified by comparison with the simulation results
obtained from two particle-in-cell codes, which show good agreement. © 2008 American Institute
of Physics. �DOI: 10.1063/1.3000131�

I. INTRODUCTION

Background plasma can be used as an effective neutral-
ization scheme to transport and compress intense charged
particle beam pulses. To neutralize the large repulsive space-
charge force of the beam particles, the beam pulses can be
transported through a background plasma. The plasma elec-
trons can effectively neutralize the beam charge, and the
background plasma can provide an ideal medium for beam
transport and focusing. Neutralization of the beam charge
and current by a background plasma is an important issue for
many applications involving the transport of fast particles in
plasmas, including astrophysics,1–4 accelerators,4,5 and iner-
tial fusion, in particular, fast ignition6 and heavy ion
fusion,7,8 magnetic fusion based on field reversed configura-
tions fueled by energetic ion beams,9 the physics of solar
flares,10 as well as basic plasma physics phenomena.11

Previous studies have explored the option of ion beam
pulse neutralization by passing the beam pulse through a
layer of plasma or a plasma plug.12 The ion beam pulse ex-
tracts electrons from the plasma plug and drags electrons
along during its motion outside the plasma plug region.
There are several limitations of this scheme. When the in-
tense ion beam pulse enters the plasma, the electrons stream
into the beam pulse in the strong self-electric and self-
magnetic fields, attempting to drastically reduce the ion
beam space charge from a non-neutralized state to a com-
pletely neutralized state. After the ion beam pulse exits the
plasma, the beam carries along the electrons, with average
electron density and velocity equal to the ion beam’s average
density and velocity. However, large-amplitude plasma
waves are excited in a nonstationary periodic pattern resem-

bling butterfly wing motion.13 Due to these transient effects,
the beam may undergo transverse emittance growth, which
would increase the focal spot size.14 Smoother edges to the
plasma plug density profile lead to a more gradual neutral-
ization process and, in turn, results in a smaller emittance
growth.14

There are other limitations of this scheme in addition to
a deterioration due to transient effects during the beam entry
into and exit from the plasma plug. As the beam transversely
focuses after passing thorough the plasma plug, the trans-
verse electron �and ion beam� temperature increases due to
the compression and can reach very high values.16 As a re-
sult, the electron Debye length can become comparable with
the beam radius, and the degree of charge neutralization is
reduced considerably. This may result in poor beam focus-
ing. Including gas ionization by the beam ions does not sig-
nificantly improve the neutralization, mainly because the
electrons, which are produced by ionization, are concentrated
in the beam path, whereas for effective neutralization of the
ion beam pulse, the supply of electrons should be from out-
side the beam.14

Therefore, neutralized ballistic focusing typically re-
quires the presence of background plasma in and around the
beam pulse path for good charge neutralization. Reference
16 showed that hot electrons cannot neutralize the beam well
enough; therefore, any electron heating due to beam-plasma
interactions has to be minimized. The presence of cold,
“fresh” plasma in the beam path provides the minimum
space-charge potential and the best option for neutralized
ballistic focusing. Experimental studies of ballistic transverse
focusing have confirmed that the best results are achieved
when both a plasma plug and a bulk plasma are used for
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charge neutralization.8,11 Hence, in the following we only
study the case when a large amount of cold background
plasma is available everywhere on the beam path.

The application of a solenoidal magnetic field allows
additional control and focusing of the beam pulse.15 A strong
magnetic lens with a magnetic field up to a few Tesla can
effectively focus beams in short distances order of a few tens
of centimeters. However, due to the very strong magnetic
field in the solenoid, the magnetic field leaking outside the
solenoid can affect the degree of charge and current neutral-
ization. In this paper, we show that even a small solenoidal
magnetic field, typically less than 100 G, strongly changes
the self-magnetic and self-electric fields in the beam pulse
propagating in a background plasma. Such values of mag-
netic field can be present over distances of a few meters from
the strong solenoid, and thereby affect the focusing of the
beam pulse. Moreover, a small solenoidal magnetic field can
be applied to optimize propagation of a beam pulse through
a background plasma over long distances.

In Refs. 18 and 19, the response of a magnetized plasma
to intense ion beam injection was studied while neglecting
electron inertia effects, which corresponded to magnetic
fields of a few Tesla in ion ring devices. In the present paper,
we analyze the opposite limit, corresponding to small values
of magnetic field. In the collisionless limit and without an
applied solenoidal magnetic field, the return current is driven
by an inductive electric field which is balanced by electron
inertia effects.20 Taking electron inertia effects into account
allows us to study the transition from the limit where the
solenoidal magnetic field is small, i.e., where the presence of
the applied solenoidal magnetic field begins to affect the re-
turn current in the plasma, and to determine the range of
magnetic field values which strongly affect the self-electric
and self-magnetic fields of a beam pulse propagating in a
background plasma. This allows us to study the beam pulse
evolution over a wide range of solenoidal magnetic field
strengths, from approximately zero to very large values, such
as when the beam pulse encounters an applied solenoidal
magnetic lens. Beam pulse propagation in a background
plasma immersed in an applied solenoidal magnetic field has
been studied both analytically and numerically using two
different particle-in-cell codes to crosscheck the validity of
the results.

This paper is a considerably extended version of our
earlier letter21 on this topic. In the present paper an analytic
model is developed to describe the self-electromagnetic
fields of a finite-length beam pulse propagating in a cold
background plasma in a solenoidal magnetic field. Previ-
ously, we developed an analytic model to describe the cur-
rent neutralization of a beam pulse propagating in a back-
ground plasma20,22 without an applied magnetic field. These
studies provided important scaling laws for the degrees of
charge and current neutralization,23,24 as well as served as a
computationally efficient tool for describing relativistic elec-
tron beam transport in collisionless plasma for modeling of
the electromagnetic Weibel instability.22

The electron response time to an external charge pertur-
bation is determined by the electron plasma frequency, �pe

= �4�e2np /m�1/2, where np is the background plasma density.

Therefore, as the beam pulse enters the background plasma,
the plasma electrons tend to neutralize the beam pulse on a
time scale of order �pe

−1. Typically, the beam pulse propaga-
tion duration through the background plasma is long com-
pared with �pe

−1. For electron beam pulses, some instabilities
can develop very fast on a time scale comparable to the
plasma period, 2� /�pe. However, if the beam density is
small compared to the plasma density the instabilities’
growth rates are also small compared to the plasma
frequency.22 As a result, after the beam pulse passes through
a short transition region, the plasma disturbances are station-
ary in the beam frame. In a previous study, we have devel-
oped reduced nonlinear models, which describe the station-
ary plasma disturbance �in the beam frame� excited by the
intense ion beam pulse.13,20 In these calculations,20 we inves-
tigated the nonlinear quasiequilibrium properties of an in-
tense, long ion beam pulse propagating through a cold, back-
ground plasma, assuming that the beam pulse duration is
much longer than 2� /�pe, i.e., �b�pe�2�, where �b is the
beam pulse duration. In a subsequent study,13 we extended
the previous results to general values of the parameter �b�pe.
Theoretical predictions agree well with the results of calcu-
lations utilizing several particle-in-cell �PIC� codes.13,20

The model predicts very good charge neutralization dur-
ing quasisteady-state propagation, provided the beam is non-
relativistic and the beam pulse duration and the beam current
rise time is much longer than the electron plasma period, i.e.,
�b�pe�2�. Thus, the degree of charge neutralization de-
pends on the beam pulse duration and plasma density, and is
independent of the beam current �if np�nb�. However, the
degree of beam current neutralization depends on both the
background plasma density and the beam current. The beam
current can be neutralized by the electron return current. The
beam charge is neutralized mostly by the action of the elec-
trostatic electric field. In contrast, the electron return current
is driven by the inductive electric field generated by the in-
homogeneous magnetic flux of the beam pulse in the refer-
ence frame of the background plasma. Electrons are acceler-
ated in the direction of beam propagation for ion beams and
in the opposite direction for electron beams. From the charge
density continuity equation, �� /�t+� ·J=0 ��=e�np+Zbnb

−ne��, it follows that if the electrons neutralize the current
they will neutralize the charge as well. The inductive electric
field penetrates into the plasma over distances of order the
skin depth c /�pe, where c is the speed of light. If the beam
radius, rb, is small compared with the skin depth c /�pe, the
electron return current is distributed over distances of order
c /�pe. As a result, the electron return current is about
rb�pe /c times smaller than the beam current. Consequently,
the beam current is neutralized by the electron current, pro-
vided the beam radius is large compared with the electron
skin depth, i.e., rb�c /�pe, and is not neutralized in the op-
posite limit. This condition can be written as Ib

�4.25�bnb /np kA, where �b is the beam velocity normal-
ized to the speed of light, and nb is the beam density.

This model has been extended to include the additional
effects of gas ionization during beam propagation in a back-
ground gas. Accounting for plasma production by gas ioniza-
tion yields a larger self-magnetic field of the ion beam com-
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pared to the case without ionization, and a wake of the
current density and self-magnetic field are generated behind
the beam pulse.25 In Ref. 25, beam propagation in a dipole
magnetic field configuration and background plasma has also
been studied.

In the presence of an applied solenoidal magnetic field,
however, the system of equations describing the self-
magnetic field becomes much more complicated. A high so-
lenoidal magnetic field inhibits radial electron transport, and
the electrons move primarily along the magnetic field lines.
For high-intensity beam pulses propagating through a back-
ground plasma with pulse duration much longer than the
electron plasma period, one is tempted to assume that the
quasineutrality condition holds, ne�np+Zbnb, where ne is
the electron density, nb is the density of the beam pulse, Zbe
is ion charge for the beam ions, whereas Zb=−1 for electron
beams, and np is the density of the background ions �as-
sumed unperturbed by the beam�. In the limit of a strong
magnetic field, the plasma electrons are attached to the mag-
netic field lines and their motion is primarily along the mag-
netic field lines. For one-dimensional electron motion, the
charge density continuity equation, �� /�t+� ·J=0, com-
bined with the quasineutrality condition ��=e�np+Zbnb−ne�
�0� and absence of external current yields J�0. Therefore,
in the limit of a strong solenoidal magnetic field, the beam
current can be expected to be completely neutralized.

However, the above description fails to account for the
electron rotation that develops in the presence of a solenoidal
magnetic field. Due to the small inward radial electron mo-
tion, the electrons can enter into the region of smaller sole-
noidal magnetic flux. Due to the conservation of canonical
angular momentum, the electrons start spinning with a very
high azimuthal velocity, which is much larger than the ion
beam rotation velocity. This spinning produces many unex-
pected effects.

The first effect is the dynamo effect.26 If the magnetic
field is attached to the electron flow, the electron rotation
bends the solenoidal magnetic field lines and generates an
azimuthal self-magnetic field in the beam pulse. �Note,
though, that when electron inertia effects are taken into ac-
count the generalized electron vorticity is frozen into the
plasma electron flow, rather than simply the magnetic field
lines being frozen into the electron flow, as discussed in the
next section.� Moreover, the electron rotation generates a
self-magnetic field that is much larger than in the limit with
no applied field. The second effect is the generation of a
large radial electric field. Because the v	
Bz force should
be balanced by a radial electric field, the spinning results in a
plasma polarization, and produces a much larger self-electric
field than in the limit with no applied field. The total force
acting on the beam particles now can change from always
focusing20 in the limit with no applied solenoidal magnetic
field, to defocusing at higher values of the solenoidal mag-
netic field. In particular, an optimum value of magnetic field
for long-distance transport of a beam pulse, needed, for ex-
ample, in inertial fusion applications,17 can be chosen where
the forces nearly cancel. The third unexpected effect is that
the joint system consisting of the ion beam pulse and the
background plasma acts as a paramagnetic medium, i.e., the

solenoidal magnetic field is enhanced inside of the ion beam
pulse.

With a further increase in the magnetic field value, the
beam pulse can excite strong electromagnetic perturbations,
including whistler waves, corresponding to longer
wavelengths,18,27 and lower-hybrid-like or helicon
waves,28,29 corresponding to shorter wavelengths. Both wave
perturbations propagate nearly perpendicular to the beam
propagation direction. A similar excitation of helicon waves
during fast penetration of the magnetic field due to the Hall
effect in high energy plasma devices, such as, plasma open-
ing switches and Z pinches, has been observed in Refs. 30.
Here, we consider relatively short ion pulses with pulse du-
ration �b�2� /�pi, where �pi is the background ion plasma
frequency, so that the background plasma ion response can
be neglected. For longer ion pulses, the plasma ion response
may effect the plasma return current.11,31,32

The organization of this paper is as follows: In Sec. II,
the basic equations and model are discussed. Section III pro-
vides a comparison between analytic theory and particle-in-
cell simulations results. In Sec. IV, the dependence of the
radial force acting on the beam particles on the strength of
the solenoidal magnetic field is discussed. Finally, Sec. V
describes the excitation of electromagnetic perturbations by
the beam pulse, including whistler waves and lower-hybrid-
like �helicon� waves. In a follow-up publication the limit of
strong magnetic field will be discussed.33

II. BASIC EQUATIONS

The electron fluid equations together with Maxwell’s
equations comprise a complete system of equations describ-
ing the electron response to the propagating ion beam pulse.
The electron fluid equations consist of the continuity
equation,

�ne

�t
+ � · �neVe� = 0, �1�

and the force balance equation,

�Ve

�t
+ �Ve · ��Ve = −

e

m
�E +

1

c
Ve 
 B� , �2�

where −e is the electron charge, m is the electron rest mass,
and Ve is the electron flow velocity. Maxwell’s equations for
the self-generated electric and magnetic fields, E and B, are
given by

� 
 B =
4�e

c
�ZbnbVb − neVe� +

1

c

�E

�t
, �3�

� 
 E = −
1

c

�B

�t
, �4�

where Vb is the ion beam velocity, ne and nb are the number
densities of the plasma electrons and beam ions, respectively,
and Zb is the ion charge state for the beam ions, whereas
Zb=−1 for electron beams.

We assume that the beam pulse moves with constant
velocity Vb along the z-axis. We look for stationary solutions
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in the reference frame of the moving beam, i.e., where all
quantities depend on t and z exclusively through the combi-
nation �Vbt−z�. We further consider cylindrically symmetric,
long beam pulses with length, lb, and radius, rb, satisfying

lb � Vb/�pe, lb � rb, �5�

where �pe= �4�e2ne /m�1/2 is the electron plasma frequency.
We also assume that the fields and electron flow velocity and
density are in steady state in a reference frame moving with
the beam pulse. We introduce the vector potential,

B = � 
 A , �6�

and make use of the transverse Coulomb gauge, �� ·A=0.
For axisymmetric geometry, this gives Ar=0. The azimuthal
magnetic field is

B	 = −
�Az

�r
, �7�

and the perturbed �by the plasma� magnetic field components
are

Bz =
1

r

��rA	�
�r

, Br = −
�A	

�z
. �8�

For long beams with lb�Vb /�pe, the displacement cur-
rent �the final term on the right-hand side of Eq. �3�� is of
order �Vb /�pelb�2�1 compared to the electron current. Be-
cause lb�rb is assumed, the terms on the left-hand side of
Eqs. �3� of order �rb / lb�2 are neglected, as well. This gives

−
1

r

�

�r
�r

�Az

�r
� =

4�e

c
�ZbnbVbz − neVez� �9�

and

−
�

�r
�1

r

��rA	�
�r

	 =
4�e

c
�ZbnbVb	 − neVe	� . �10�

The electron momentum equation, Eq. �2�, can be solved
to obtain the three components of electron velocity
Vez ,Ver ,Ve	. However, it is easier to use conservation of the
generalized vorticity,20,22,30,34 which states that the circula-
tion C of the canonical momentum,

C 
 � �pe − eA/c� · r �11�

taken along a closed loop, which is “frozen-in” and moving
together with the electron fluid, remains constant. Applying
Thompson’s theorem, the circulation defined in Eq. �11� can
be rewritten as the surface integral of the generalized vortic-
ity

C = � �pe − eA/c� · r

=� � 
 �pe − eA/c� · S


� � · S , �12�

where S is the fluid surface element, and the generalized
vorticity is defined as

� = � 
 �pe − eA/c� . �13�

If electron inertia terms are neglected, the electron mechani-
cal momentum can also be neglected in the expression for
the generalized vorticity, which gives �−eB /c. The con-
servation of generalized vorticity then becomes the well-
known expression for the conservation of magnetic flux
through a fluid contour �C= �B ·S=const.�, e.g., see Ref.
35.

Equation �12� can be rewritten in the differential form20

��

�t
+ �Ve · ��� = − ��� · Ve� + �� · ��Ve. �14�

Substituting � ·Ve into Eq. �14� from the continuity equation
�1�,

� · Ve = −
1

ne

�ne

�t
−

Ve

ne
· �ne, �15�

gives

� �

�t
+ Ve · ����

ne
� = ��

ne
· ��Ve. �16�

This is a generalization of the “frozen-in” condition for the
magnetic field lines, when electron inertia terms are
neglected.35

As an example of application of the generalized vorticity
law, we derive the magnetic dynamo effect using both inte-
gral and differential forms of the conservation of generalized
vorticity, given by Eq. �12� and Eq. �16�, respectively. Con-
sider a small element of the electron fluid of size drdz, po-
sitioned in a plane of constant 	; then �� ·S= ��	drdz�0,
as shown in Fig. 1. In the next time interval, t+dt, the fluid
element moves and rotates. Due to the differential rotation
�Ve	 /�z, the sides of the element rotate differently, and the
surface element opens in the z-direction. In the next time
interval, �� ·S=−�zdrdz�Ve	 /�zdt+ ��	drdz�1. Using the
fact that the electron density is conserved in the fluid ele-
ment, drdzne, the time derivative of the azimuthal compo-
nent of vorticity, ��	1−�	0� /dt, can be written as

d

dt

�	

ne
=

1

ne
�z

�Ve	

�z
. �17�

This result can also be derived directly by taking the azi-
muthal projection of Eq. �16� and neglecting the small radial
contribution on the right-hand side, because �r��z.

For simplicity, in the following we consider the most
practically important case when the plasma density is large

dz

dr

FIG. 1. Schematic of the differential rotation of fluid elements near the
symmetry axis.
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np�nb so that the changes in ne can be neglected in Eq. �16�.
Also because np�nb, the effects of electron flows are small
compared to the beam motion �Vez�Vb�, and we approxi-
mate d /dtVb� /�z. Substituting into Eq. �17�, and integrat-
ing with zero initial conditions in front of the beam pulse
gives

�	 =
�zVe	

Vb
. �18�

Here, we made use of the fact that �z=−eBz /c is approxi-
mately constant. From Eq. �13�, it follows that �	

�−��mVez−eAz /c� /�r, where only the radial derivatives are
taken into account, due to the approximation of long beam
pulses in Eq. �5�. Substituting the expressions for �	 and �z

into Eq. �18�, and integrating radially gives

Vez =
e

mc
Az +

eBz

mcVb
�

r

�

Ve	dr . �19�

The first term on the right-hand side of Eq. �19� describes the
conservation of canonical momentum in the absence of mag-
netic field; the second term describes the magnetic dynamo
effect, i.e., the generation of azimuthal magnetic field due to
the rotation of magnetic field lines,26 as shown in Fig. 2.
Note that, if the inertia effects are neglected, Eq. �18� de-
scribes the magnetic field “frozen in” the electron flow, B	

=BzVe	 /Vb.
Substituting Ve	 from Ampere’s law in Eq. �10�, and

assuming that the velocity of the beam rotation is small com-
pared to the rotation velocity of the plasma electrons, gives

�
r

�

Ve	dr = −
c

4�enp

1

r

��rA	�
�r

+ �
r

�

Zb
nb

np
Vb	dr . �20�

Substituting Eq. �20� into Eq. �19� then gives

Vez =
e

mc
Az −

Bz

4�mVbne

1

r

��rA	�
�r

+
eBz

mcVb
�

r

�

Zb
nb

np
Vb	dr .

�21�

Similarly, from the z projection of Eq. �16�, we obtain

�

r�r
r�mVe	 − eA	/c� = −

eBz

cVb
�Vb

ne − np

np
− Vez� , �22�

and accounting for quasineutrality, ne−np=Zbnb, and substi-
tuting the expression for the current Jz=ZbenbVb−enpVez

gives

mVe	 − eA	/c =
Bz

cVbnpr
�

r

�

Jzrdr . �23�

Equation �23� describes the conservation of canonical angu-
lar momentum

mVe	 =
e

c
�A	 + rBz� , �24�

where r is the change in the radial position of the electron
fluid element inside of the beam pulse compared to the initial
radial position in front of the beam pulse. Indeed, because of
the conservation of current, � ·J=0, it follows that �r

�Jzrdr
=er�z

�neVerdz=eVbrnpr, where r is the change in the
radial position of a contour immersed in the electron fluid.
Equation �23� also describes the conservation of vorticity
flux in the z-direction through a circle in the azimu-
thal direction, �� ·S=2��0

rrdr�z=2��0
rrdrd�r�mVe	

−eA	 /c�� /rdr=2�r�mVe	−eA	 /c�−�r2eBz /c=const.
Making use of Ampere’s equation in the z-direction

gives �r
�Jzrdr= �cr /4���Az /�r, and

mVe	 −
e

c
A	 =

Bz

4�Vbnp

�Az

�r
. �25�

Substituting Eqs. �19� and �25� into the corresponding com-
ponents of Ampere’s equation then gives

−
1

r

�

�r
�r

�Az

�r
� =

4�e

c �ZbnbVbz −
e

mc
neAz

+
Bz

4�mVb

1

r

��rA	�
�r

+
eBz

mcVb
�

r

�

Zb
nb

np
Vb	dr	 , �26�

and

−
�

�r
�1

r

��rA	�
�r

	 =
4�e

c
�ZbnbVb	 −

e

mc
neA	

−
Bz

4�mVb

�Az

�r
� . �27�

As we shall see in the next section, under conditions of
interest, the electron rotation is of order the electron cyclo-
tron frequency times the ratio of the beam density to the
plasma density, which is much larger than the ion rotation,
which is given by the ion cyclotron frequency and the last
term on the right-hand side of Eq. �26� can be neglected. In
general, analysis shows that the electron inertia terms are
important if

Vb

magnetic field lineion beam pulse

magnetic flux surfaces

FIG. 2. �Color online� Schematic of magnetic field generation due to the
dynamo effect. The magnetic field line is shown by the black solid line; a
contour attached to the electron fluid element is shown by the brown dashed
line in front of the beam pulse; and the dotted brown line indicates this
contour inside of the ion beam pulse, the outline of which is shown by the
orange, thin dotted line. The radial electron displacement generates a poloi-
dal rotation; the poloidal rotation twists the solenoidal magnetic field and
generates the poloidal magnetic field.
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�ecrb

Vb
��M

m
,

in the opposite limit of the electron motion can be described
in pure drift approximation.

III. COMPARISON OF ANALYTIC THEORY
AND PARTICLE-IN-CELL SIMULATIONS

Figures 3 and 4 show the simulation results obtained
from the particle-in-cell �PIC� code EdPIC �Ref. 20� for the
density and magnetic field of an ion beam pulse propagating
with beam velocity Vb=0.5c in slab geometry, whereas Figs.
5 and 6 show the simulation results obtained from the LSP

code, with Vb=0.33c.36 In all simulations beams enter the
plasma in the presence of a uniform solenoidal magnetic
field. After some transitional period, plasma perturbations
reach a quasisteady-state in the beam frame. We have per-
formed the PIC simulations in slab geometry, because the
numerical noise tends to be larger in cylindrical geometry
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FIG. 3. �Color online� The electron density perturbation caused by an ion
beam pulse moving with velocity Vb=0.5c along the z-axis. The beam den-
sity is one-half of the background plasma density; the beam profile is flattop
with smooth edges; the beam radius is rb=1.5c /�pe; and the beam half
length is lb=7.5c /�pe.
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FIG. 4. �Color online� Comparison of analytic theory and EdPIC particle-in-cell simulation results for the self-magnetic field and the perturbations in the
solenoidal magnetic field in the center slice of the beam pulse. The beam parameters are the same as in Fig. 3. The beam velocity Vb=0.5c. The values of
applied solenoidal magnetic field correspond to the ratio of cyclotron to plasma frequency �ce /�pe: �a� 0; �b� 0.25; �c� 0.5; and �d� 1.
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due to the singularity on the axis �r=0�. In Fig. 3, the beam
density is one-half of the background plasma density; the
beam profile has a flat top with smooth edges; the beam
radius corresponds to rb=1.5c /�pe; and the beam half length
is lb=7.5c /�pe, lead ions were assumed, however, and ion
motion was not important for short beam pulses. Figure 3
shows that large-amplitude plasma waves are excited by the
beam head. The plasma waves are electrostatic, and, there-
fore, the plasma waves do not have an effect on the structure
of the self-magnetic field of the beam pulse,20 except that the
local value of the electron density is different from the pre-
dictions of the quasineutrality condition �ne=Zbnb+np� and
affects the value of the return current eneVez. Such large den-
sity perturbations are not accounted for in linear analytic
theory �nb�np�, which is the reason for the difference be-
tween the PIC simulations and the analytic predictions, as
will be shown below. Note that the presence of the solenoidal
magnetic field results in an increase of the self-magnetic
field. This is due to the magnetic dynamo effect caused by
the electron rotation, as discussed above �see also Fig. 2�.

Another unusual effect is that the system consisting of
the beam pulse together with the background plasma acts
paramagnetically; the solenoidal magnetic field is larger in
the center of the beam pulse than the initial value of the
applied magnetic field. This effect can be found to originate
from Eqs. �26� and �27� in the limit where the skin depth is
large compared with the beam radius �c /�pe�rb�. In this
limit, the terms proportional to the return current neA	 on the
right-hand side of Eq. �27� can be neglected compared with
the terms on the left-hand side. Without taking into account
contributions from the ions, and neglecting the term neA	,
Eq. �27� can then be integrated from r to �, assuming that
A	=0 as r→�. This gives for the perturbation in the sole-
noidal magnetic field

Bz =
1

r

��rA	�
�r

=
4�e

c
� BzAz

4�mVb
� . �28�

Note that Bz is positive, i.e., the combination of the beam
and plasma acts paramagnetically! In the follow-up

research,37 we found that the beam plus plasma system re-
sponse strongly depends on parameter �ce /�b�pe. If
�ce /�b�pe�1, the response is paramagnetic, if �ce /�b�pe

�1, the response is diamagnetic.
Substituting Eq. �28� into Eq. �26� gives

−
1

r

�

�r
�r

�Az

�r
� =

4�e

c
�ZbnbVbz −

e

mc
neAz

+
Bz

2

4�m2Vb
2

e

c
Az� . �29�

Note that the final positive term on the right-hand side of Eq.
�29� proportional to Bz

2 describes the dynamo effect, and
leads to an increase in the self-magnetic field. This increase
becomes significant if

ne �
Bz

2

4�mVb
2 �30�

or

�ce � �pe
Vb

c
, �31�

where �ce=eBz /mc is the electron cyclotron frequency. This
is evident in Fig. 4 by comparing the value of the self-
magnetic field in Figs. 4�a�–4�c� with Fig. 4�d�.

Figure 6 shows a comparison of analytic theory and LSP

�Ref. 36� particle-in-cell simulation results for the self-
magnetic field, the perturbation in the solenoidal magnetic
field, and the radial electric field in the ion beam pulse. The
beam velocity is Vb=0.33c, and the beam density profile is
Gaussian, nb0 exp�−r2 /rb

2−z2 / lb
2�, where rb=1 cm, lb

=17 cm, nb0=np /2=1.2
1011 cm−3. The background
plasma density is np=2.4
1011 cm−3, except for case �d�,
where the beam density is nb0=0.6
1011 cm−3 and the
plasma density is np=4.8
1011 cm−3; and case �f�, where
nb0=0.3
1011 cm−3 and the background density is np=2.4

1011 cm−3. Figure 5 shows the electron density perturba-
tion generated by the beam pulse. Because the beam head is
long compared with the length Vb /�pe, the beam head does
not excite any plasma waves,20 and the quasineutrality con-
dition ne=nb+np is satisfied �compare Fig. 3 and Fig. 5�.

For this choice of beam parameters, the skin depth is
approximately equal to the beam radius c /�pe�rb, so that
the return current does not screen the beam self-magnetic
field significantly. Without the applied solenoidal magnetic
field, the maximum value of the magnetic field is 56 G �see
Fig. 6�a��. The analytic theory agrees well with the PIC
simulation results, because in this case the theory applies
even for the nonlinear case nb�np.20 The radial electric field
is small and cannot be distinguished from numerical noise in
the PIC simulations. For the value of the applied solenoidal
magnetic field Bz0=300 G, in Fig. 6�b�, the parameter
�ce /�b�pe=0.57, where �b=Vb /c is small. Therefore, the
dynamo effect is insignificant according to Eq. �29�. Figures
6�c� and 6�e� correspond to two and three times larger mag-
netic fields �Bz0=600 G and Bz0=900 G�, respectively. The
value of the parameter �ce /�b�pe=1.1,1.7, rises above unity,
and the dynamo effect results in a considerable increase in
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cm
)

140

180
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3

FIG. 5. �Color online� The electron density perturbation caused by an ion
beam pulse moving with velocity Vb=0.33c along the z-axis. The beam
density profile is Gaussian with rb=1 cm, lb=17 cm, and nb0=np /2=1.2

1011 cm−3.
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the self-magnetic field of the beam, also in agreement with
Eq. �29�. The 20% difference between the analytic and PIC
simulation results is due to the fact that the theory of the
dynamo effect is linear in the parameter nb /np, whereas

nb /np=0.5 in Figs. 6�b�, 6�c�, and 6�e�. Figure 6�d� shows
results for nb /np=0.125, and the linear theory results are
practically indistinguishable from the PIC simulation results.
Figure 6�f� shows results for nb /np=0.125, and the linear
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FIG. 6. �Color online� Comparison of analytic theory and LSP particle-in-cell simulation results for the self-magnetic field, perturbation in the solenoidal
magnetic field, and the radial electric field in a perpendicular slice of the beam pulse. The beam parameters are the same as in Fig. 5 with nb0=np /2=1.2

1011 cm−3, except for �d�, where nb0=np /8=0.6
1011 cm−3, and �f�, where nb0=np /8=0.3
1011 cm−3. The values of the applied solenoidal magnetic field,
Bz0, are: �a� Bz0=0 G; �b� Bz0=300 G; �c� and �d� Bz0=600 G; �e� and �f� Bz0=900 G.
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theory results differs from the PIC simulation results by ap-
proximately 30%. This is due to the assumption of quasineu-
trality, which requires �ce

2 /�pe
2 �1 as shown below. For the

conditions in Fig. 6�f�, �ce
2 /�pe

2 =0.33, which accounts for the
30% difference from the PIC simulation results.

The radial electric field can be obtained from the radial
component of the momentum balance equation �2�. Neglect-
ing the small radial electron velocity Ver gives

Er =
mVe	

2

er
+

1

c
�− Ve	Bz + VezB	� , �32�

where Ve	 is given by Eq. �25�. From Eq. �32� it follows that
the radial electric field increases strongly with increasing so-
lenoidal magnetic field, as is evident in Fig. 6. As shown in
Sec. V, the ion dynamics can reduce radial electric field and
has to be taken into account for very long beam pulses lb

�rb�M /m�1/2.
As the electric field increases with an increase in the

applied solenoidal magnetic field, the assumption of
quasineutrality may fail. To find the criterion for validity of
the theory we estimate the electric field value, considering
only linear terms assuming nb�np. In this limit, the nonlin-
ear terms in Eq. �32� can be neglected, which gives

Er = −
1

c
Ve	Bz. �33�

Equations �26� and �27� can be represented in dimensionless
form if the following normalization is applied:

�r� = p 

c

�pe
,

�Az� =
mcVbz

e

Zbnb0

np
,

�A	� = Bzp
Zbnb0

np
,

�Ve	� =
eBzp

mc

Zbnb0

np
,

where nb0=nb�0� is the on-axis value of the beam density.
Some straightforward algebra applied to Eqs. �26� and �27�
gives for the normalized components of vector potential, az

=Az / �Az� and a	=A	 / �A	�,

−
1

�

�

��
��

�az

��
� =

nb�r/p�
nb0

− az +
�ce

2

�pe
2 �b

2

1

�

���a	�
��

, �34�

�

��
�1

�

���a	�
��

� = a	 +
�az

��
. �35�

Here, �
r /p. Note that the solutions of Eqs. �34� and �35�
depend only on two parameters: the ratio of the beam radius
to the skin depth �through the beam density profile�, and the
parameter �ce

2 /�pe
2 �b

2, which characterizes the dynamo effect
�see Eq. �31��.

The electron rotation velocity and azimuthal magnetic
field are expressed through the normalized components of
vector potential according to

Ve	 =
Zbnb0

np

eBzp

mc
�a	 +

�az

��
� , �36�

B	 = −
Zbnb0

np

mcVbz

ep

�az

��
. �37�

Substituting Eqs. �36� and �37� into Eq. �33� then gives

Er = −
Zbnb0

np

mVbz
2

ep

�ce
2

�pe
2 �b

2� �az

��
+ a		 . �38�

The quasineutrality condition requires

� �rEr

r�r
� � 4�e�Zb�nb0. �39�

Substituting the estimate �Er /�r�Er /p for Er into Eq. �38�,
and taking the normalized vector potentials to be of order
unity into Eq. �39� gives the condition

�ce
2

�pe
2 � 1. �40�

The reason for the condition in Eq. �40� can be explained
as follows. The dielectric constant transverse to the magnetic
field is given by

�� = 1 +
�pe

2

�ce
2 − �2 . �41�

In the analytic derivation, we accounted only for the plasma
part of the dielectric constant �the last term on the right-hand
side of Eq. �41��, and neglected the displacement current.
Apparently when ���ce, this is valid only if the condition
in Eq. �40� is satisfied. In order to account for a departure
from the quasineutrality condition, we substitute into Eq.
�22� the perturbations in the electron density according to the
Poisson equation

�Zbnb − ne + np� =
1

4�er

��rEr�
�r

,

which gives

��r�mVe	 − eA	/c��
r�r

= −
Bz

cnpVb
�−

Vb��rEr�
4�r�r

+ ZbnbeVb − eVeznp	 . �42�

Integrating Eq. �42� with respect to r gives

Ve	 =
e

mc
A	 +

Bz

mcVbnpr��r

�

Jzrdr +
rVbEr

4� 	 . �43�

Substituting Eq. �33� for Er,

Er = −
1

c
Ve	Bz, �44�

and �r
�Jzrdr= �cr /4���Az /�r into Eq. �43� then gives
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Ve	�1 +
�ce

2

�pe
2 � =

e

mc
A	 +

Bz

4�mVbnp

�Az

�r
. �45�

Equation �26� remains the same, but Eq. �27� is modified to
become

− �1 +
�ce

2

�pe
2 � �

�r
�1

r

��rA	�
�r

	
=

4�e

c
�ZbnbVb	 −

e

mc
neA	 −

Bz

4�mVb

�Az

�r
� . �46�

The equations for the normalized vector potentials become

−
1

�

�

��
��

�az

��
� =

nb�r/p�
nb0

− az +
�ce

2

�pe
2 �b

2

1

�

���a	�
��

, �47�

�1 +
�ce

2

�pe
2 � �

��
�1

�

���a	�
��

	 = a	 +
�az

��
. �48�

The electron rotation velocity, azimuthal magnetic field, and
radial electric field are then expressed through the normal-
ized components of vector potential according to

Ve	 =
Zbnb0

np�1 +
�ce

2

�pe
2 �

eBzp

cm
�a	 +

�az

��
� , �49�

B	 = −
Zbnb0

np

mcVbz

ep

�az

��
, �50�
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FIG. 7. �Color online� Comparison of analytic theory and LSP particle-in-cell simulation results for the self-magnetic field, perturbation in the solenoidal
magnetic field, and the radial electric field in a perpendicular slice of the beam pulse. The beam velocity is Vb=0.808c. The plasma and beam parameters are
np=4.8
1011 cm−3, nb0=0.5
1011 cm−3. The values of the applied solenoidal magnetic field, Bz0, are: �a� Bz0=0 G; �b� Bz0=900 G; �c� Bz0=1800 G; and �d�
Bz0=3600 G.
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Er = −
Zbnb0

np�1 +
�ce

2

�pe
2 �

mVbz
2

ep

�ce
2

�pe
2 �b

2� �az

��
+ a		 . �51�

Figure 6�f� and Fig. 7 show the effects of the modifica-
tion of Eq. �27� to Eq. �46�. For the conditions in Fig. 6�f�,
�ce

2 /�pe
2 =0.33, and this 30% correction brings the analytic

results much closer the PIC simulation results. Figure 7
shows the self-magnetic and self-electric fields for a faster
beam pulse than shown in Fig. 6, with Vb=0.808c. Figure
7�a� shows the case without any applied magnetic field; the
notation “Nonlin. Anal.” denotes the results calculated from
Eq. �26� where the perturbation in the electron density �non-
linear term� in the return current �neAz, ne=np+Zbnb� is taken
into account; because nb /np�0.1, this term accounts for
about 10% of the difference between the nonlinear and linear

theories. Figures 7�b�–7�d� show the results of linear theory
when the solenoidal magnetic field is applied. The notation
“Full Anal.” denotes the results calculated from the system
Eqs. �26� and Eq. �46�, whereas the notation “Anal.” denotes
the system of equations corresponding to Eqs. �26� and �27�.
The difference becomes noticeable for B=1.8 kG, where
�ce

2 /�pe
2 =0.66. At the larger value of the magnetic field B

=3.6 kG, �ce
2 /�pe

2 =2.6 and the solutions to Eqs. �26� and
�27� show the excitation of waves, whereas the system of
equations corresponding to Eqs. �26� and �46� does not, as
described in Sec. V.

Figure 8 shows the perturbation in the electron density
for B=0,3.6,5.4 kG, which corresponds to �ce /�pe

=0,1.6,2.4. It is evident that for cases �b� and �c� the
quasineutrality condition breaks down, which corresponds to
�ce��pe. However, when the beam radius is increased, this

δ
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FIG. 8. Comparison of analytic theory and LSP particle-in-cell simulation results for the perturbation in the electron density. The beam velocity is Vb

=0.808c. The plasma and beam parameters are np=4.8
1011 cm−3, nb0=1011 cm−3. The beam density profile is Gaussian, nb0 exp�−r2 /rb
2�, where rb=1 cm,

except for �d�. The values of the applied solenoidal magnetic field, Bz0, are: �a� Bz0=0 G; �b� Bz0=3600 G; �c� Bz0=5400 G. �b� shows the effect of the beam
radius on the perturbation in the electron density for the parameters in case �c�, but with the beam radius equal to 2, 4, and 8 cm; only analytic calculations
are shown.
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leads to a decrease in the radial electric field according to Eq.
�51�, and consequently the quasineutrality condition is re-
stored for the perturbation in the electron density as shown in
Fig. 8�d�.

IV. RADIAL FORCE ACTING ON THE BEAM
PARTICLES

The radial force acting on the beam particles is

Fr = eZb�−
1

c
VbzB	 + Er� , �52�

where the radial electric field is given by Eq. �32�. Without
the solenoidal magnetic field applied, substituting Eq. �32�
into Eq. �52� gives

Fr = −
eZb

c
�Vbz − Vez�B	, �53�

and the radial force is always focusing, because the electron
flow velocity in the return current is always smaller than the
beam velocity, Vez�Vbz.

20 However, in the presence of the
solenoidal magnetic field, the radial force can change sign
from focusing to defocusing, because the radial electric field
grows faster than the magnetic force −ZbVbzB	, as the sole-
noidal magnetic field increases. To demonstrate this tendency
analytically, let us consider only linear terms in the radial
force equation assuming nb�np. In this limit, the nonlinear
terms in Eq. �32� can be neglected, which gives

Fr = −
eZb

c
�VbzB	 + Ve	Bz� , �54�

where Ve	 is given by Eq. �25�.
Substituting Eqs. �36� and �37� into Eq. �54� then gives

Fr =
Zb

2nb0

np

mVbz
2

p
� �az

��
−

�ce
2

��pe
2 + �ce

2 ��b
2� �az

��
+ a	�	 . �55�

From Eq. �55�, it is evident that, in the limit �ce
2 � ��pe

2

+�ce
2 ��b

2 or �ce��pe�b�b �where �b
2=1 / �1−�b

2��, the radial
force is focusing ��az /�r�0�, but if �ce��pe�b�b, the ra-
dial force can become defocusing. Figure 9 shows the evo-
lution of the radial profile of the normalized radial force for
a nonrelativistic beam �b�1 �the term in the square bracket
on the right-hand side of Eq. �55�� acting on the beam par-
ticles for various values of the parameter �ce

2 /�pe
2 �b

2. The
radial force is nearly zero when �ce

2 /�pe
2 �b

2=1.5 for the main
part of the beam pulse. This value can be optimal for beam
transport over long distances to avoid the pinching effect.
Note that the radial force is focusing at larger radius, which
can help to minimize halo formation and produce a tighter
beam.

Figure 10 shows the optimum value of the parameter
�ce

2 /�pe
2 �b

2, ���ce
2 /�pe

2 �b
2�op�, plotted as a function of rb /p

corresponding to the minimum radial force for effective
beam transport over long distances. Note that for small
rb /p, ��ce

2 /�pe
2 �b

2�op is approximately equal to unity, and in-
creases with rb /p to the limiting value 4; this value corre-
sponds to the onset of excitation of whistler and lower-
hybrid-like waves. For �ce

2 /�pe
2 �b

2�4 the structure of the

self-electromagnetic field becomes rather complicated,37 and
the transport of very intense beam pulses with rb /p�6 in
the presence of a solenoidal magnetic field can be strongly
affected by collective wave generation, as discussed in the
next section.

V. BEAM EXCITATION OF THE WHISTLER
AND HELICON WAVES

In this section, we explicitly take into account that the
beam can be relativistic. As shown below, excitation of the
waves disappears in the limit of a relativistic beam with �b

�1. In the case of a dense background plasma, np�nb, the
electron velocity is much smaller than the speed of light; and

δ

FIG. 9. �Color online� The normalized radial force Fr / �Zb
2nb0mVbz

2 /npp�
acting on the beam particles for different values of the parameter �ce

2 /�pe
2 �b

2.
The gray line �green online� shows the Gaussian density profile multiplied
by 0.2 in order to fit the profile into the plot. The beam radius is equal to the
skin depth, rb=p.

ω
ω

β

δ

FIG. 10. The parameter ��ce
2 /�pe

2 �b
2�op plotted as a function of rb /p corre-

sponding to the minimum radial force for effective beam transport over long
distances. The beams have Gaussian density profiles with different values of
rb /p.
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relativistic corrections to the electron motion need not be
taken into account.20 Equations �26� and �46� support wave
excitations when

�ce

�pe
� 2�b�b

2. �56�

Indeed, looking for solutions of Eqs. �26� and �46� propor-
tional to exp�ikx� for a uniform plasma in the absence of a
beam pulse, some straightforward algebra gives

�b
2�1 +

1

�2�k4p
4 + ��b

2�1 +
1

�2� +
�b

2

�2 − 1	k2p
2 +

�b
2

�2

= 0, �57�

where �=�ce /�pe. Equation �57� can be also derived from
the general dispersion relation for electromagnetic waves
�see for example, Refs. 38 and 39�,

A� kc

�
�4

+ B� kc

�
�2

+ C = 0, �58�

where A=�� sin2 �+�� cos2 �, B=−�����1+cos2 ��− ���
2

−g2�sin2 �, C=�����
2 −g2�. In the dispersion relation �58�,

�� ,�� ,g are components of the plasma dielectric tensor,
cos �=k� /k is the angle of wave propagation relative to the
magnetic field, k� is the k�-vector along the direction of the
solenoidal magnetic field, and k= �k�. Here, we account for
the fact that for long beam pulses, only waves with k�-vectors
nearly perpendicular to the beam velocity are excited, k�

�k��k. The wave phase-velocity should coincide with the
beam velocity for a steady-state wave pattern in the beam
frame, i.e.,

� = Vbk� . �59�

When small terms of order k�
2p

2 and k�
2p

2 /�2 are neglected
in the general dispersion relation, Eq. �58�, the resulting
equation becomes Eq. �57�. The solution to Eq. �57� is

k2p
2 =

�2 − 2�b
2�b

2 � ��2��2 − 4�b
2�b

4�
2�b

2�b
2�1 + �2�

. �60�

Therefore, when the condition in Eq. �56� is satisfied, waves
are excited. Note that the solutions to the approximate sys-
tem, Eqs. �26� and �27�, without taking into account the term
corresponding to quasineutrality breaking down �the term
proportional to �ce

2 /�pe
2 on the left-hand side of the equation

for A	�, show the excitation of waves when �ce /�pe�2�b.
The difference between this approximate condition and the
exact condition given by Eq. �56� is sizable when �b→1. For
example, for the conditions in Fig. 7, �b=0.808 and for the
conditions in Fig. 7�d�, �ce /�pe=1.621�2�b=1.617, and
waves are not excited, whereas the approximate criterion
predicts excitation of waves. Particle-in-cell simulation re-
sults show that waves are not excited even for twice larger
values of the magnetic field because the critical value of
�ce /�pe is equal to 2�b�b

2=4.7, which justifies the criterion
given in Eq. �56�.

A. Excitation of helicon „lower-hybrid-like… waves

In the limit ��2�b�b
2, the upper-root solution in Eq.

�60� tends to kp=� /�b�b�1+�2�1/2, and substituting the
definition of � gives

k → k+ = klh =
�ce�pe

c�b�b��ce
2 + �pe

2 �1/2 . �61�

This mode corresponds to the excitation of helicon �lower-
hybrid-like� waves. Consider nonrelativistic beam pulses
with �b�1, then the lower-hybrid frequency is38,39

� =
�ce�pe

��ce
2 + �pe

2 �1/2 cos � . �62�

Figure 11 shows the excitation of helicon �lower-hybrid-like�
waves observed in simulations using the LSP particle-in-cell
code.

Substituting Eq. �59� into Eq. �62� and using cos �
=k� /k, yields the limiting value k→k+ for lower-hybrid
waves given by Eq. �61�. As evident from Eq. �60�, for �
�2�b, klhp�1 and the lower-hybrid waves have short
wavelengths, of order or smaller than the skin depth in agree-
ment with PIC simulation results.29 Lower-hybrid waves
were observed in PIC simulations.27,29 Note that for relativ-
istic beams there is an extra factor 1 /�b in Eq. �61� compared
with the derivation based on the lower hybrid frequency, Eq.
�62�. This is because the traditional analysis for the plasma
resonances �including the lower hybrid frequency� assumes
A=0, whereas a more rigorous calculation shows that in the
limit cos �→0 the second term with the B factor has also to
be taken into account when solving Eq. �58�. Due to this
subtle difference we call these waves “lower-hybrid-like”
waves not simply lower-hybrid waves. Similar to the low-
hybrid waves if cos �=k� /k�rb / lb� �m /M�1/2 the ion dynam-
ics has to be accounted for.39 Therefore, this theory is valid
for not very long beam pulses lb�rb�M /m�1/2.

In addition to a steady-state pattern of waves in the beam
frame,27 nonstationary lower-hybrid waves were observed
propagating perpendicular to a strong solenoidal magnetic
field when the beam parameters changes rapidly near the
focal plane.29 A similar excitation of helicon waves during
fast penetration of the magnetic field due to the Hall effect in
high energy plasma devices, such as plasma opening
switches and Z pinches, was observed in Refs. 30. Coupling
of the helicon waves to the plasma or the beam ions can lead
to development of the electrostatic modified two-stream
instability.44

B. Excitation of whistler waves

The lower-root solution in Eq. �60� in the limit �
�2�b�b

2 tends to kp=�b�b /� and describes long wave-
length perturbations. Substituting the definition of � gives

k → k− = kwh =
�pe

2 �b�b

c�ce
, �63�

corresponding to whistler-wave excitation. Excitation of
whistler waves in cylindrical geometry can be derived from
Eq. �34� directly by assuming that the wavelength is large
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compared with the skin depth kwsp�1. Then the terms on
the left-hand side of Eqs. �26� and �27� can be neglected, and
neglecting the small ion beam rotation gives

e

mc
neA	 = −

Bz

4�mVb

�Az

�r
. �64�

Substituting Eq. �64� into Eq. �26� yields

cBz
2

�4��2emneVb
2

1

r

�

�r
�r

�Az

�r
� +

e

mc
neAz = ZbnbVbz. �65�

Equation �65� describes oscillations with wavelength

�wh =
cBz

2enpVb
, �66�

which correspond to whistler waves.18 Indeed, the dispersion
relation for whistler waves is39

�2 =
�ce

2 c2

�pe
4 �k�

2 +
�pi

2

c2 �k2,

where �pi is the ion plasma frequency and k� is the wave-
number along the magnetic field. Assuming that the beam
pulse length is not very long, i.e., k� �1 / lb��pi /c, the whis-
tler wave dispersion relation becomes

� =
�cec

�pe
2 k�k . �67�

Because the perturbations correspond to a steady-state wave
pattern in the beam frame, �=Vbk� in the laboratory frame.
Substituting Eq. �59� into Eq. �67� shows that the whistler
waves are excited with the same wavenumber perpendicular
to the beam velocity18
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FIG. 11. �Color online� LSP particle-in-cell simulation results for the perturbations in electron density, self-magnetic field, and self-electric radial field. The
beam velocity is Vb=0.2c. The plasma and beam parameters are np=1011 cm−3, and nb0=0.5
1011 cm−3. The beam density profile is Gaussian,
nb0 exp�−z2 / lb

2−r2 /rb
2�, where rb=2.8 cm, and lb=5.7 cm. The value of the applied solenoidal magnetic field is Bz0=2839 G. �a� shows the beam density; �b�

the electron density; �c� the self-magnetic field By; and �d� the self-electric field Ex.
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kwh =
�pe

2 Vb

�cec
,

which is equivalent to Eq. �63� or Eq. �66�.
Particle-in-cell simulations show that structure of the

self-electric and self-magnetic fields excited by the beam in
the presence of whistler and lower-hybrid waves becomes
rather complex,27,29 and will be discussed in future publica-
tions. Coupling of helicon waves to the beam ion oscillations
can lead to the development of the modified two-stream
instability.44

VI. CONCLUSIONS

Application of a solenoidal magnetic field strongly af-
fects the degree of current and charge neutralization when

�ce

�pe
� �b�b, �68�

��b=1 /�1−�b
2� or equivalently,

B � 320�b�b�np�cm−3�
1010 G. �69�

The threshold value of B given in Eq. �69� corresponds to
relatively small values of the magnetic field for nonrelativis-
tic beams. When the criterion in Eq. �69� is satisfied, appli-
cation of the solenoidal magnetic field leads to three unex-
pected effects:

�1� The first effect is the dynamo effect, in which the elec-
tron rotation generates a self-magnetic field that is much
larger than in the limit with no applied magnetic field.

�2� The second effect is the generation of a large radial elec-
tric field. Because the v	
Bz force should be balanced
by a radial electric field, the spinning results in a plasma
polarization and produces a much larger self-electric
field than in the limit with no applied field.

�3� The third unexpected effect is that the joint system con-
sisting of the ion beam pulse and the background plasma
act as a paramagnetic medium, i.e., the solenoidal mag-
netic field is enhanced inside of the ion beam pulse.

Application of the solenoidal magnetic field can be used
for active control of beam transport through background
plasma. Without the applied solenoidal magnetic field, the
radial force is always focusing, because the magnetic attrac-
tion of parallel currents in the beam always dominates the
radial electric field, which is screened by the plasma better
than the self-magnetic field. However, when a solenoidal
magnetic field is applied, the radial electric force can become
larger than the magnetic force, resulting in beam defocusing.
Figure 10 shows the optimum value of the parameter
�ce

2 /�pe
2 �b

2�op plotted as a function of the ratio of the beam
radius to the skin depth, rb /p, corresponding to the mini-
mum radial force for effective beam transport over long
distances.

For larger values of the solenoidal magnetic field, corre-
sponding to

�ce

�pe
� 2�b

2�b, �70�

or equivalently,

B � 640�b
2�b�np�cm−3�

1010 G, �71�

the beam generates whistler and lower-hybrid waves. For
nonrelativistic beams �b�1, the whistler waves have long
wavelength compared with the skin depth

�wh =
cBz

2enpVb
, �72�

whereas helicon �lower-hybrid-like� waves have short wave-
length compared with the skin depth

�w =
2�Vb��ce

2 + �pe
2 �1/2

�ce�pe
. �73�

When collective waves are excited, the particle-in-cell simu-
lations show that the structure of the self-electromagnetic
field becomes rather complex, and the transport of very
intense beam pulses can be strongly affected by the
wave generation,27,29 which will be discussed in future
publications.

Beam propagation in a plasma is considered to be an
effective way to compress intense beam pulses both longitu-
dinally and transversely by applying a small velocity tilt.8,17

A number of possible instabilities during propagation of
beam pulses through a background plasma in a solenoidal
magnetic field40,41 can be effectively mitigated by a small
velocity tilt and plasma density inhomogeneity.42,43

In a follow-up publication the limit of strong magnetic
field will be discussed.33

ACKNOWLEDGMENTS

We thank Mikhail Dorf, Bryan Oliver, Dale Welch, Jean-
Luc Vay, and Alex Friedman for fruitful discussions.

This research was supported by the U.S. Department of
Energy Office of Fusion Energy Sciences and the Office of
High Energy Physics.

1H. Alfven, Phys. Rev. 55, 425 �1939�.
2W. H. Bennett, Phys. Rev. 45, 890 �1934�.
3M. V. Medvedev and A. Loeb, Astrophys. J. 526, 697 �1999�; M. V.
Medvedev, M. Fiore, R. A. Fonseca, L. O. Silva, and W. B. Mori, Astro-
phys. J. Lett. 618, L75 �2005�; A. Gruzinov, ibid. 563, L15 �2001�; A.
Spitkovsky, ibid. 673, L39 �2008�.

4A. R. Bell, Mon. Not. R. Astron. Soc. 358, 181 �2005�.
5P. Chen, J. M. Dawson, R. W. Huff, and T. Katsouleas, Phys. Rev. Lett.

54, 693 �1985�.
6R. Govil, W. P. Leemans, E. Yu. Backhaus, and J. S. Wurtele, Phys. Rev.
Lett. 83, 3202 �1999�; G. Hairapetian, P. Davis, C. E. Clayton, C. Joshi, S.
C. Hartman, C. Pellegrini, and T. Katsouleas, ibid. 72, 2403 �1994�.

7M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, A. Snavely, S. C. Wilks,
K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D.
Perry, and H. Powell, Phys. Rev. Lett. 86, 436 �2001�; M. Tabak, J.
Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M.
Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 �1994�.
R. B. Campbell, R. Kodama, T. A. Mehlhorn, K. A. Tanaka, and D. R.
Welch, Phys. Rev. Lett. 94, 055001 �2005�; Y. Sentoku, K. Mima, P. Kaw,
and K. Nishikawa, ibid. 90, 155001 �2003�; T. Taguchi, T. M. Antonsen,
Jr., C. S. Liu, and K. Mima, ibid. 86, 5055 �2001�; A. J. Kemp, Y.

103108-15 Controlling charge and current neutralization… Phys. Plasmas 15, 103108 �2008�

Downloaded 05 Dec 2008 to 198.35.1.240. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1103/PhysRev.55.425
http://dx.doi.org/10.1103/PhysRev.45.890
http://dx.doi.org/10.1086/308038
http://dx.doi.org/10.1086/427921
http://dx.doi.org/10.1086/427921
http://dx.doi.org/10.1086/324223
http://dx.doi.org/10.1086/527374
http://dx.doi.org/10.1111/j.1365-2966.2005.08774.x
http://dx.doi.org/10.1103/PhysRevLett.54.693
http://dx.doi.org/10.1103/PhysRevLett.83.3202
http://dx.doi.org/10.1103/PhysRevLett.83.3202
http://dx.doi.org/10.1103/PhysRevLett.72.2403
http://dx.doi.org/10.1103/PhysRevLett.86.436
http://dx.doi.org/10.1063/1.870664
http://dx.doi.org/10.1103/PhysRevLett.94.055001
http://dx.doi.org/10.1103/PhysRevLett.90.155001
http://dx.doi.org/10.1103/PhysRevLett.86.5055


Sentoku, V. Sotnikov, and S. C. Wilks, ibid. 97, 235001 �2006�; R. J.
Mason, ibid. 96, 035001 �2006�.

8P. K. Roy, S. S. Yu, and E. Henestroza, Phys. Rev. Lett. 95, 234801
�2005�; E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, B.
G. Logan, W. L. Waldron, D. L. Vanecek, D. R. Welch, D. V. Rose, R. C.
Davidson, P. C. Efthimion, E. P. Gilson, A. B. Sefkow, and W. M. Sharp,
Phys. Plasmas 11, 2890 �2004�; Nucl. Instrum. Methods Phys. Res. A
544, 225 �2005�.

9M. Anderson, M. Binderbauer, V. Bystritskii, E. Garate, N. Rostoker, Y.
Song, A. Van Drie, and I. Isakov, Plasma Phys. Rep. 31, 809 �2005�; V.
Bystritskii, E. Garate, N. Rostoker, Y. Song, A. Vandrie, and M. Anderson,
J. Appl. Phys. 96, 1249 �2004�; H. Yamada, H. Ji, S. Gerhardt, E. V.
Belova, R. C. Davidson, and D. R. Mikkelsen, J. Plasma Fusion Res. 2,
004 �2007�; H. Ji, E. Belova, S. P. Gerhardt, and M. Yamada, J. Fusion
Energy 26, 93 �2007�.

10T. N. Larosa and A. Gordon, Sol. Phys. 120, 343 �1989�.
11M. D. Gabovich, Sov. Phys. Usp. 20, 134 �1977�; I. A. Soloshenko, Rev.

Sci. Instrum. 67, 1646 �1996�.
12W. M. Sharp, D. A. Cahallan, and M. Tabak, Fusion Sci. Technol. 43, 393

�2003�; D. Callahan, Fusion Eng. Des. 32–33, 441 �1996�; D. R. Welch,
D. V. Rose, W. M. Sharp, C. L. Olson, and S. S. Yu, Laser Part. Beams 20,
621 �2002�; Nucl. Instrum. Methods Phys. Res. A 544, 236 �2005�.

13I. D. Kaganovich, E. Startsev, and R. C. Davidson, Phys. Plasmas 11,
3546 �2004�.

14W. M. Sharp, D. A. Callahan, M. Tabak, S. S. Yu, P. F. Peterson, D. V.
Rose, and D. R. Welch, Fusion Sci. Technol. 44, S221 �2004�.

15C. Burkhart and S. Humphries, Jr., Proceedings of the 12th IEEE Particle
Accelerator Conference, 16–19 March 1987, Washington, D.C., p. 1037;
http://accelconf.web.cern.ch/AccelConf/p87/PDF/PAC1987_1037.PDF.

16A. F. Lifschitz, G. Maynard, and J. L. Vay, Nucl. Instrum. Methods Phys.
Res. A 544, 202 �2005�; A. F. Lifschitz, G. Maynard, J. L. Vay, and A.
Lenglet, J. Phys. IV 133, 754 �2006�; J.-L. Vay and C. Deutsch, Nucl.
Instrum. Methods Phys. Res. A 464, 293 �2001�; Phys. Plasmas 5, 1190
�1998�.

17C. M. Celata, F. M. Bieniosek, E. Henestroza, J. W. Kwan, E. P. Lee, G.
Logan, L. Prost, P. A. Seidl, J. L. Vay, W. L. Waldron, S. S. Yu, J. J.
Barnard, D. A. Callahan, R. H. Cohen, A. Friedman, D. P. Grote, S. M.
Lund, A. Molvik, W. M. Sharp, G. Westenskow, R. C. Davidson, P.
Efthimion, E. Gilson, L. R. Grisham, I. Kaganovich, H. Qin, E. A.
Startsev, S. Bernal, Y. Cui, D. Feldman, T. F. Godlove, I. Haber, J. Harris,
R. A. Kishek, H. Li, P. G. O’Shea, B. Quinn, M. Reiser, A. Valfells, M.
Walter, Y. Zou, D. V. Rose, and D. R. Welch, Phys. Plasmas 10, 2063
�2003�; B. G. Logan, F. M. Bieniosek, C. M. Celata, E. Henestroza, J. W.
Kwan, E. P. Lee, M. Leitner, P. K. Roy, P. A. Seidl, S. Eylon, J.-L. Vay, W.
L. Waldron, S. S. Yu, J. J. Barnard, D. A. Callahan, R. H. Cohen, A.
Friedman, D. P. Grote, M. Kireeff Covo, W. R. Meier, A. W. Molvik, S.
M. Lund, R. C. Davidson, P. C. Efthimion, E. P. Gislon, L. R. Grisham, I.
D. Kaganovich, H. Qin, E. A. Startsev, D. V. Rose, D. R. Welch, C. L.
Olson, R. A. Kishek, P. O’Shea, I. Haber, and L. R. Prost, Nucl. Instrum.
Methods Phys. Res. A 577, 1 �2007�.

18B. V. Oliver, D. D. Ryutov, and R. N. Sudan, Phys. Plasmas 1, 3383
�1994�.

19B. V. Oliver, D. D. Ryutov, and R. N. Sudan, Phys. Plasmas 3, 4725
�1996�.

20I. D. Kaganovich, G. Shvets, E. A. Startsev, and R. C. Davidson, Phys.
Plasmas 8, 4180 �2001�.

21I. D. Kaganovich, E. A. Startsev, A. B. Sefkow, and R. C. Davidson, Phys.
Rev. Lett. 99, 235002 �2007�.

22O. Polomarov, A. B. Sefkow, I. D. Kaganovich, and G. Shvets, Phys.
Plasmas 14, 043103 �2007�.

23I. D. Kaganovich, E. Startsev, and R. C. Davidson, Laser Part. Beams 20,
497 �2002�.

24I. D. Kaganovich, E. Startsev, and R. C. Davidson, Phys. Scr., T 107, 54
�2004�.

25I. D. Kaganovich, E. Startsev, and R. C. Davidson, Nucl. Instrum. Meth-
ods Phys. Res. A 544, 383 �2005�.

26R. N. Sudan and P. M. Lyster, Comments Plasma Phys. Controlled Fusion
9, 453 �1984�; D. W. Hewett, Nucl. Fusion 24, 349 �1984�.

27I. D. Kaganovich, A. B. Sefkow, E. A. Startsev, R. C. Davidson, and D. R.
Welch, Nucl. Instrum. Methods Phys. Res. A 577, 93 �2007�.

28J. S. Pennington, I. D. Kaganovich, E. A. Startsev, A. B. Sefkow, and R.
C. Davidson, Particle Accelerator Conference, 365 �2007�, http://cern.ch/
AccelConf/p07/PAPERS/THPAS083.PDF.

29A. B. Sefkow, R. C. Davidson, I. D. Kaganovich, E. P. Gilson, P. K. Roy,
S. S. Yu, P. A. Seidl, D. R. Welch, D. V. Rose, and J. J. Barnard, Nucl.
Instrum. Methods Phys. Res. A 577, 289 �2007�; Ph.D. thesis, Princeton
University, 2007.

30M. B. Isichenko and A. M. Marnachev, Sov. Phys. JETP 66, 702 �1987�;
Ya. L. Kalda and A. S. Kingsep, Sov. J. Plasma Phys. 15, 508 �1989�; Ja.
Kalda, Phys. Rev. E 54, 1824 �1996�.

31H. L. Berk and L. D. Pearlstein, Phys. Fluids 19, 1831 �1976�; K. R. Chu
and N. Rostoker, ibid. 16, 1472 �1973�; R. Lee and R. N. Sudan, ibid. 14,
1213 �1971�. S. E. Rosinskii and V. G. Rukhlin, Sov. Phys. JETP 37, 436
�1973�.

32V. I. Pistunovich, V. V. Platonov, V. D. Ryutov, and E. A. Filimonova, Sov.
J. Plasma Phys. 2, 418 �1976�.

33I. D. Kaganovich, E. A. Startsev, M. Dorf, and R. C. Davidson, “Control-
ling charge and current neutralization of an ion beam pulse in a back-
ground plasma by application of a solenoidal magnetic field: Strong mag-
netic field limit,” Phys. Plasmas �unpublished�.

34O. Buneman, Proc. R. Soc. London, Ser. A 215, 346 �1952�.
35L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media

�Pergamon, Oxford, 1993�.
36T. P. Hughes, S. S. Yu, and R. E. Clark, Phys. Rev. ST Accel. Beams 2,

110401 �1999�; D. R. Welch, D. V. Rose, B. V. Oliver, T. C. Genoni, R. E.
Clark, C. L. Olson, and S. S. Yu, Phys. Plasmas 9, 2344 �2002�.

37M. Dorf, I. D. Kaganovich, E. A. Startsev, and R. C. Davidson, “Self-
focusing on an ion beam propagating through a background neutralizing
plasma along a solenoidal magnetic field,” Phys. Plasmas �unpublished�.

38A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N.
Stepanov, Plasma Electrodynamics �Nauka, Moscow, 1974�.

39E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics �Pergamon, Oxford,
1981�.

40R. J. Briggs, Electron Stream Interaction With Plasmas �MIT, Cambridge,
1964�.

41V. B. Krasovitskii, Instabilities of a Relativistic Electron Beam in Plasma
�Nova Science, New York, 2007�.

42C. Thoma, D. R. Welch, S. S. Yu, E. Henestroza, P. K. Roy, S. Eylon, and
E. P. Gilson, Phys. Plasmas 12, 043102 �2005�.

43E. A. Startsev and R. C. Davidson, Nucl. Instrum. Methods Phys. Res. A
577, 79 �2007�.

44E. A. Startsev, R. C. Davidson, and M. Dorf, Phys. Plasmas 15, 062107
�2008�.

103108-16 Kaganovich et al. Phys. Plasmas 15, 103108 �2008�

Downloaded 05 Dec 2008 to 198.35.1.240. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1103/PhysRevLett.97.235001
http://dx.doi.org/10.1103/PhysRevLett.96.035001
http://dx.doi.org/10.1103/PhysRevLett.95.234801
http://dx.doi.org/10.1063/1.1652712
http://dx.doi.org/10.1016/j.nima.2005.01.210
http://dx.doi.org/10.1134/1.2101968
http://dx.doi.org/10.1063/1.1759400
http://dx.doi.org/10.1585/pfr.2.004
http://dx.doi.org/10.1007/s10894-006-9043-4
http://dx.doi.org/10.1007/s10894-006-9043-4
http://dx.doi.org/10.1007/BF00159883
http://dx.doi.org/10.1070/PU1977v020n02ABEH005331
http://dx.doi.org/10.1063/1.1146909
http://dx.doi.org/10.1063/1.1146909
http://dx.doi.org/10.1017/S0263034602204279
http://dx.doi.org/10.1016/j.nima.2005.01.211
http://dx.doi.org/10.1063/1.1758945
http://dx.doi.org/10.1016/j.nima.2005.01.207
http://dx.doi.org/10.1016/j.nima.2005.01.207
http://dx.doi.org/10.1016/S0168-9002(01)00050-X
http://dx.doi.org/10.1016/S0168-9002(01)00050-X
http://dx.doi.org/10.1063/1.872648
http://dx.doi.org/10.1063/1.1560611
http://dx.doi.org/10.1016/j.nima.2007.02.070
http://dx.doi.org/10.1016/j.nima.2007.02.070
http://dx.doi.org/10.1063/1.870487
http://dx.doi.org/10.1063/1.872040
http://dx.doi.org/10.1063/1.1386804
http://dx.doi.org/10.1063/1.1386804
http://dx.doi.org/10.1103/PhysRevLett.99.235002
http://dx.doi.org/10.1103/PhysRevLett.99.235002
http://dx.doi.org/10.1063/1.2710812
http://dx.doi.org/10.1063/1.2710812
http://dx.doi.org/10.1017/S0263034602203274
http://dx.doi.org/10.1238/Physica.Topical.107a00054
http://dx.doi.org/10.1016/j.nima.2005.01.265
http://dx.doi.org/10.1016/j.nima.2005.01.265
http://dx.doi.org/10.1016/j.nima.2007.02.039
http://dx.doi.org/10.1016/j.nima.2007.02.064
http://dx.doi.org/10.1016/j.nima.2007.02.064
http://dx.doi.org/10.1103/PhysRevE.54.1824
http://dx.doi.org/10.1063/1.861398
http://dx.doi.org/10.1063/1.1694544
http://dx.doi.org/10.1063/1.1693588
http://dx.doi.org/10.1103/PhysRevSTAB.2.110401
http://dx.doi.org/10.1063/1.1448831
http://dx.doi.org/10.1063/1.1854174
http://dx.doi.org/10.1016/j.nima.2007.02.037
http://dx.doi.org/10.1063/1.2918673

